My Field for Dummies: Understanding bat evolution and the fossil record

Matthew F. Jones, Ph.D. Assistant Professor, Arizona State University Twitter: @therealmfj Bluesky: @mfjones

- Why study paleontology?
- The bat fossil record
- Early bat evolution
- Bat origins

Why study paleontology?

Why study paleontology?

Early Cenozoic Period

Paleocene and Eocene epochs chronicle the recovery post K–Pg mass extinction and the establishment of most modern orders of mammals

	R	NO	ZOIC	
AGE MAGNETIC (Ma) ¥ § §	PERIOD	EPOCH	AGE	PICKS (Ma)
2 2 2 2 2	of the second	PLEISTOCENE*	CALADRIAN	1.0.01
		PLIOCENE	PIACENZIAN	3.6
34 CIA			MESSINIAN	5.3
10 5 000	NE	E	TORTONIAN	;
5A CM	GE	ENI	SERRAVALLIAN	11.6
15 88 68	00	oci	LANGHIAN	10.0
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	NE	М	BURDIGALIAN	10,0
80 64 000			AQUITANIAN	- 20.4
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		CENE	CHATTIAN	
30 10 C40 11 CH 12 C12		OLIGO	RUPELIAN	3
10 12 10 12 110 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 1			PRIABONIAN	3 99
40 18 018	NE		BARTONIAN	41.0
45 21 621	EOGE	EOCENE	LUTETIAN	
	PAL	E	YPRESIAN	100
25 025		ENE	THANETIAN	5 8
		OCI	SELANDIAN	61,6
12 12 12 12 12 12 12 12 12 12 12 12 12 1		PALE	DANIAN	8
30 55				6.0

Paleontology field methods

Quarrying

• Useful for large fossils and/or locations where fossils are exceptionally abundant

Paleontology field methods

Surface prospecting

- Recovers small to large fossils exposed on surface
- Useful for identifying locations to quarry or screen-wash

Paleontology field methods

Screen-washing

- Recovers small to tiny fossils
- Residue is sorted through under a microscope in the lab

The bat fossil record: what do we have?

Green River Formation (52 mya) & Messel oil shale (48 mya)

The bat fossil record: what do we have?

The oldest bats

Archaeonycteris (K) praecursor Portugal 56–55 mya (L)

(L) M

2 mm

Australonycteris clarkae Australia 54.5 mya

Figure credit: Smith et al. 2012; Jones et al. 2021

Mammal paleontology = mammal teeth

Placental mammals

- Tribosphenic molars
- Precise occlusion
- Covered in enamel

Figure credit: Bown and Kraus 1979

Mammal paleontology = mammal teeth

Cheek side (buccal)

Tongue side

(lingual)

Tongue side

(lingual)

Cheek side

(buccal)

→ Back

Back

Generalized placental mammal molars

9 10-11-

Bat molars

13

-18

-19

-20

-21

Understanding relationships of fossil bats

Most studies of fossil bat relationships only include species known from complete skeletons

Understanding relationships of fossil bats

Figure credit: Hand et al. 2023

Understanding relationships of fossil bats

Including fragmentary fossil bats recovers more complex relationships

Ecological signal in bat dentition

Teeth inform ecology

Shape of bat teeth (especially molars) varies with diet

Miocene bat from South America **Notonycteris** (13 mya) apparently was an insectivore/omnivore

Spectral bat, *Vampyrum spectrum* (Marco Tschapka)

Post-cranial bones of ancient bats

Comparing wing dimensions and size helps inform how fossil bats flew

B

- Aspect ratio wing length/wing width
- Wing loading body mass/wing area

Post-cranial bones of ancient bats

Isolated postcranial bones have been studied much less frequently

Post-cranial bones of ancient bats

Comparison to living New Zealand short-tailed bats suggests *Icarops* (20 mya, Australia) was capable of terrestrial locomotion before isolation in New Zealand!

NZ short-tailed bat, *Mystacina tuberculata* (Rod Morris)

Could early bats echolocate?

Skull bones provide insight into echolocation ability of fossil bats

Could early bats echolocate?

Understanding early bat faunas

- Dentition
- Wing morphology
- Gut contents
- Echolocation

But where did they come from?

Bats lack transitional forms or obvious close relatives in the fossil record

Laurasiatheria

Closest living relatives of bats are very morphologically diverse

...but,

Laurasiatheria traces origins to northern continents (Asia, Europe, North America)

Artiodactyla

Perissodactyla

Carnivora

Eulipotyphla

Pholidota

Nyctitheres?

Enigmatic early Cenozoic insectivores

Cambaya – described as a nyctithere, now thought to be a bat

Wyonycteris – described as a bat, now thought to be a nyctithere

- More complete picture of bat evolution
- Informs evolution of morphology, behavior, and ecology of early bats
- Vital to understanding bat origins

Check out:

- Amador, L.I., Simmons, N.B., and Giannini, N.P., 2019. Aerodynamic reconstruction of the primitive fossil bat Onychonycteris finneyi (Mammalia: Chiroptera). Biology Letters 15:20180857.
- Hand, S.J., Weisbecker, V., Beck, R.M.D., Archer, M., Godthelp, H., Tennyson, A.J.D., and Worthy, T.H., 2009. Bats that walk: a new evolutionary hypothesis for the terrestrial behaviour of New Zealand's endemic mystacinids. BMC Evolutionary Biology 9:169.
- Hand, S.J., Maugoust, J., Beck, R.M.D., and Orliac, M.J., 2023. A 50-million-year-old, three-dimensionally preserved bat skull supports an early origin for modern echolocation. Current Biology 33:1-17.
- Jones, M.F., Beard, K.C., and Simmons, N.B., 2024. **Phylogeny and systematics of early Paleogene bats**. Journal of Mammalian Evolution 31:18.
- López-Aguirre, C., Czaplewski, N.J., Link, A., Takai, M., and Hand, S.J., 2022. Dietary and body-mass reconstruction of the Miocene neotropical bat Notonycteris magdalenensis (Phyllostomidae) from La Venta, Colombia. Paleobiology 48:137-153.
- Simmons, N.B., Seymour, K.L., Habersetzer, J., and Gunnell, G.F., 2008. **Primitive early Eocene bat from Wyoming and the** evolution of flight and echolocation. Nature 451:818-822.
- Simmons, N.B., and Jones, M.F., 2024. Foraging in the fossil record: Diet and behavior of the earliest bats. Pp 7-39 in A Natural History of Bat Foraging: Evolution, Physiology, Ecology, Behavior, and Conservation (Russo, D., and Fenton, B., eds.), Academic Press.
- And many others!